32 research outputs found

    Electric vehicles and low-voltage grid: impact of uncontrolled demand side response

    Get PDF
    The authors are looking at the impact of electric vehicles (EV) charging from low-voltage (LV) networks. Based on the data obtained from two different pilot projects: (i) Mini-E trial where EV users were incentivised to charge during the night; (ii) My Electric Avenue trial, where there were no similar incentives, authors want to quantify the impact of EV charging, presuming that the number of home-charging EV users will increase significantly in the near future. By assuming that the current load at individual household level is known or inferred, simulations are performed to estimate the future load. The authors look at different percentages of EV uptake and model clustered scenarios, where the social networking effect is imposed – users adopt an EV with a higher probability if their neighbour already has one. Simulations demonstrate that incentivising night-time charging can create large new peaks during the night, which could have negative effects on LV networks. On the other hand, simulations based on the data with no incentives shows that naturally occurring diversity in charging behaviour does not automatically result in comparable network stress at the same penetrations

    Analysis and clustering of residential customers energy behavioral demand using smart meter data

    Get PDF
    Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested

    Dirichlet sampled capacity and loss estimation for LV distribution networks with partial observability

    Get PDF
    With low voltage (LV) distribution networks increasingly being re-purposed beyond their original design specifications to accommodate low carbon technologies, the ability to accurately calculate their actual spare capacity is critical. Traditionally, within the Great Britain (GB) power system, there has been limited monitoring of LV distribution networks, making this difficult. This paper proposes a method for estimating spare capacity of unmonitored LV networks using demand data from customer Smart Meters. In particular, the proposed method infers existing LV network capacity, as well as losses, across scenarios where only a limited number of customers have Smart Meters installed. Typical daily load profiles across customers with Smart Meters are learned using a Dirichlet sampled Gaussian mixture model (GMM). Learned profiles are then applied to all unmetered customers to estimate network parameters. Method accuracy is assessed by comparing estimations with simulated, fully observed, LV network models. The method is also compared to benchmark models for establishing unobserved demand profiles. Overall, results in the paper show that the proposed method outperforms benchmark models in terms of accurately assessing substation headroom, particularly in scenarios where only 10-50% of customers have Smart Meters installed

    A Comparative Study of Optimal Energy Management Strategies for Energy Storage with Stochastic Loads

    Get PDF
    This paper aims to present the significance of predicting stochastic loads to improve the performance of a low voltage (LV) network with an energy storage system (ESS) by employing several optimal energy controllers. Considering the highly stochastic behaviour that rubber tyre gantry (RTG) cranes demand, this study develops and compares optimal energy controllers based on a model predictive controller (MPC) with a rolling point forecast model and a stochastic model predictive controller (SMPC) based on a stochastic prediction demand model as potentially suitable approaches to minimise the impact of the demand uncertainty. The proposed MPC and SMPC control models are compared to an optimal energy controller with perfect and fixed load forecast profiles and a standard set-point controller. The results show that the optimal controllers, which utilise a load forecast, improve peak reduction and cost savings of the storage device compared to the traditional control algorithm. Further improvements are presented for the receding horizon controllers, MPC and SMPC, which better handle the volatility of the crane demand. Furthermore, a computational cost analysis for optimal controllers is presented to evaluate the complexity for a practical implementation of the predictive optimal control systems

    A genetic algorithm approach for modelling low voltage network demands

    Get PDF
    Distribution network operators (DNOs) are increasingly concerned about the impact of low carbon technologies on the low voltage (LV) networks. More advanced metering infrastructures provide numerous opportunities for more accurate load flow analysis of the LV networks. However, such data may not be readily available for DNOs and in any case is likely to be expensive. Modelling tools are required which can provide realistic, yet accurate, load profiles as input for a network modelling tool, without needing access to large amounts of monitored customer data. In this paper we outline some simple methods for accurately modelling a large number of unmonitored residential customers at the LV level. We do this by a process we call buddying, which models unmonitored customers by assigning them load profiles from a limited sample of monitored customers who have smart meters. Hence the presented method requires access to only a relatively small amount of domestic customers' data. The method is efficiently optimised using a genetic algorithm to minimise a weighted cost function between matching the substation data and the individual mean daily demands. Hence we can show the effectiveness of substation monitoring in LV network modelling. Using real LV network modelling, we show that our methods perform significantly better than a comparative Monte Carlo approach, and provide a description of the peak demand behaviour

    Short term load forecasting and the effect of temperature at the low voltage level

    Get PDF
    Short term load forecasts will play a key role in the implementation of smart electricity grids. They are required to optimise a wide range of potential network solutions on the low voltage (LV) grid, including integrating low carbon technologies (such as photovoltaics) and utilising battery storage devices. Despite the need for accurate LV level load forecasts much of the literature has focused on the individual household or building level using data from smart meters or on aggregates of such data. In this study we provide detailed analysis of several state-of-the-art methods for both point and probabilistic LV load forecasts. We evaluate the out-of-sample forecast accuracy of these methodologies on 100 real LV feeders, for horizons from one to four days ahead. In addition, we also test the effect of temperature (both actual and forecast) on the accuracy of load forecasts. We present some important results on the drivers of forecasts accuracy as well as the empirical comparison of point and probabilistic forecast measures

    Modelling the demand and uncertainty of low voltage networks and the effect of non-domestic consumers

    Get PDF
    The increasing use and spread of low carbon technologies are expected to cause new patterns in electric demand and set novel challenges to a distribution network operator (DNO). In this study, we build upon a recently introduced method, called 'buddying', which simulates low voltage (LV) networks of both residential and non-domestic (e.g. shops, offices, schools, hospitals, etc.) customers through optimisation (via a genetic algorithm) of demands based on limited monitored and customer data. The algorithm assigns a limited but diverse number of monitored households (the 'buddies') to the unmonitored customers on a network. We study and compare two algorithms, one where substation monitoring data is available and a second where no substation information is used. Despite the roll out of monitoring equipment at domestic properties and/or substations, less data is available for commercial customers. This study focuses on substations with commercial customers most of which have no monitored 'buddy', in which case a profile must be created. Due to the volatile nature of the low voltage networks, uncertainty bounds are crucial for operational purposes. We introduce and demonstrate two techniques for modelling the confidence bounds on the modelled LV networks. The first method uses probabilistic forecast methods based on substation monitoring; the second only uses a simple bootstrap of the sample of monitored customers but has the advantage of not requiring monitoring at the substation. These modelling tools, buddying and uncertainty bounds, can give further insight to a DNO to better plan and manage the network when limited information is available

    Optimal Energy Management and MPC Strategies for Electrified RTG Cranes with Energy Storage Systems

    Get PDF
    This article presents a study of optimal control strategies for an energy storage system connected to a network of electrified Rubber Tyre Gantry (RTG) cranes. The study aims to design optimal control strategies for the power flows associated with the energy storage device, considering the highly volatile nature of RTG crane demand and difficulties in prediction. Deterministic optimal energy management controller and a Model Predictive Controller (MPC) are proposed as potentially suitable approaches to minimise the electric energy costs associated with the real-time electricity price and maximise the peak demand reduction, under given energy storage system parameters and network specifications. A specific case study is presented in to test the proposed optimal strategies and compares them to a set-point controller. The proposed models used in the study are validated using data collected from an instrumented RTG crane at the Port of Felixstowe, UK and are compared to a standard set-point controller. The results of the proposed control strategies show a significant reduction in the potential electricity costs and peak power demand from the RTG cranes

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    Evaluating the effectiveness of storage control in reducing peak demand on low voltage feeders

    Get PDF
    Uptake of Low Carbon Technologies is likely to lead to increased demand in distribution networks and consequently could impose additional stress on the networks. Battery Energy Storage Systems (BESS) are identified as a feasible alternative to traditional network reinforcement. This paper analyses two BESS scheduling algorithms (Model Predictive Control (MPC) and fixed schedule) supplied with forecasts from five methods for predicting demand on 100 low voltage feeders. Results show that forecasting feeders with higher mean daily demand produces lower mean absolute errors and better peak demand reduction. MPC with simple error improves peak reduction over fixed schedule for feeders with lower mean daily demand
    corecore